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Basic Electromagnetic Theory

Maxwell’s Equations:

Maxwell’s equations were initially postulated based on experimental evidence, and have since been
found to govern all classical electromagnetic phenomena. In both integral and differential form, they
are written as:
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E = Electric Field Intensity [V/m] D = Electric Flux Density [C/m?]
H = Magnetic Field Intensity [A/m] B = Magnetic Flux Density [T]
J = Electric Current Density [A/m?] p = Electric Charge Density [C/m3]

These equations are consistent with the conservation of charge, which is represented by the continuity

equation for current:
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Constitutive Relations:
The two divergence equations can be derived from the curl equations and the continuity equation.
Hence Maxwell’s equations represent six scalar equations with twelve unknowns. The remaining six
scalar equations required for a unique field solution are found using the constitutive equations, which
relate the fields in a certain material as:
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where € is the permittivity and T is the permeability of the material, and both are tensors in general.
In simple media, € and p are scalars, and
D =¢E = ¢pe, B B = pH = popH

where €, and p, are the relative permittivity and relative permeability of the medium.

Boundary Conditions:
At boundaries abruptly separating two dissimilar materials, the following conditions hold:
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These are derived using the integral form of Maxwell’s equations. In this form, the normal vector 7 to
the boundary points from region-2 to region-1. J is a surface current density, with units of [A/m)],
and ps is a surface charge density [C/m?].




Charges in Motion:
A charge which moves with velocity 7 in an electric and magnetic field will experience a force, which
can be calculated from:

Lorentz Force Law ~ F =q(E 47 x B)

This expression is actually considered as the definition of the electric and magnetic fields. Charges in
motion also give rise to a current density, which is given by

Convection Current  J = pv

This expression applies to charges moving through conducting materials as well. In that case, however,
the model is complicated by scattering processes in the material. Experimentally, it has been found
that the net drift velocity of the charges is proportional to the applied field in the conductor, which
is expressed through:

Ohm’s Law for Conduction Current J=0FE

where o is defined as the conductivity [S/m] of the material. It can be shown that the assumption of
Ohm’s law implies the absence of a net volume charge density in the steady-state. For poor conductors,

the time to reach the this equilibrium is on the order of 74 = €/0, the dielectric relaxation time. For
good conductors, the mean-time between collisions is more appropriate. The total current is related
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The DC resistance of a uniform bar of conducting material is given by

to the current density by

B=3272

where L is the length of the bar, and A is the cross-sectional area.

Common Terminology:

1.) A homogeneous medium is one in which the material constants are uniform everywhere in the re-
gion of interest. An inhomogeneous material varies in composition, so that the material constants
are functions of position, such as e(z) and p(z).

2.) In an isotropic material, the material constants do not depend on the polarization of the elec-
tromagnetic field. In an anisotropic medium, the material constants are functions of the field
orientation, and hence must be written as tensors, or matrices, € and 7.

3.) In linear materials, the constitutive relations are, well.. linear! That is, they do not involve
powers or other nonlinear functions of the field variables. The opposite is a nonlinear material,
in which the material constants are functions of the applied field strength, such as ¢(F) and
w(H). In general, most materials do exhibit some nonlinearity at very high field strengths, but
this regime is usually avoided.

4.) Not surprisingly, in time-invariant media the material constants do not vary with time. On the
other hand, time-varying media may have e(t) or u(t), for example.

5.) The charge density and current density are considered the sources of electric and magnetic fields.
Hence a source-free region is where (p = J = 0).

6.) Materials in which the material constants are functions of frequency, e(w) or p(w), are called
dispersive. In dispersive media, the wave velocity will be a function of frequency, which means
that modulated or pulsed signals will spread, or disperse, as they propagate. This leads to a
definition of group velocity, the velocity of energy or information travel, which must necessarily
consist of some collection of frequencies.

7.) When a material is said to be non-magnetic, this means that p = pug.



Energy, Power, and Poynting’s Theorem:
In electromagnetics, the Poynting vector P is defined as

Poynting vector: P =Ex H [W/m?

and is associated with the power density carried by the electric and magnetic fields. The direction of
P indicates the direction of power flow. Using Maxwell’s equations, the flux, or flow of the Poynting
vector out of some closed surface S can be expressed as
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This can be interpreted by identifying three forms of energy:

Stored Electric Energy Density: w, =

Stored Magnetic Energy Density: w,, =

Poynting’s theorem then becomes
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which says that the flow of power into some closed surface S equals the rate of increase of the stored
energy within that volume, plus any ohmic power loss within that region. For sinusoidally varying
fields, the Poynting vector can be expressed in terms of phasors as

complex Poynting vector: P=ExH

This gives the instantaneous power density, however the average power density is usually more impor-
tant, and this is found to be
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Time-averaged Power Density: Pave = §Re {E x H } [W/m?]

Electrostatic Fields:
When there is no time-dependence of the fields, the electric and magnetic fields can exist as indepen-
dent static fields. The electric fields are governed by
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Gauss’ law by itself is not sufficient to solve problems, unless there is a high degree of symmetry that
argues for only a single vector component of the field. Since V x E = 0 the electric fields can be
written as the gradient of a scalar potential,
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From Gauss’ law, this potential must satisfy Poisson’s equation

Poisson’s Equation: V2V = —p/e

In charge free regions, this reduces to Laplace’s equation

Laplaces Equation: ViV =0

Surfaces of constant potential are called equipotential surfaces, and are found to intersect the electric
field at right angles. Perfect conducting surfaces are equipotential surfaces.




The force existing between two charges ¢; and g2 has been found to obey Coulomb’s Law:

Coulomb’s Law:  F = Q1_QQ27¢
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where 7 is the distance between charges, and e is the permittivity of the intervening material. Using

the principle of superposition, the field and potential due to an arbitrary charge distribution can be
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written as
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In electrostatics, charge-storage devices can be created using multiple conductors separated by a
dielectric. The capacitance and energy storage of these structures is given by
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Electrostatic forces are computed as the gradient of the energy function,
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Magnetostatic Fields:
Static magnetic fields are governed by

V-H=0 ]{ H-dS=0 No Magnetic Charges
s

UxT=7 74 T dt = / 7 d8 = Lycowed  Ampere’s Law
C S

Magnetic fields are produced by steady (DC) currents. As in electrostatics, Ampere’s law by itself
is not sufficient to solve problems, unless there is a high degree of symmetry that argues for only a
single vector component of the field.

The Biot-Savart law tells us how to compute the field for an arbitrary current distribution
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An important result in magnetostatics is the field of a long wire,
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A wire carrying a DC current experiences a force in an applied field given by
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When the wire is straight, this reduces to a force per unit length of I B, with the force at right angles
to both the current and field.

The proportionality factor between total magnetic flux through a circuit and the source current is
called the inductance. For a circuit with N loops, the inductance and stored energy is given by
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Since B should also be proportional to N, inductance usually varies as N2. Magnetostatic forces are
computed as the gradient of the energy function,
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Time-Varying Fields and Phasors:

Maxwell’s equations apply quite generally to all time varying electromagnetic phenomenon. However,
time-harmonic, or sinusoidally varying fields are most commonly used, with time-dependence coswt.
Although physically meaningful quantities can only be represented by real numbers, it is usually
more convenient to introduce the complex exponential e/“*
directly. Field quantities calculated with the complex exponential will generally be complex, and are
called phasors. When phasors are used, the actual, or physically meaningful time-dependence can be
recovered by using:

rather than use real sinusoidal functions

E(7,t) = Re {E(T)e™"}

where Re {} denotes the real part of what is in the brackets. In this form, the coswt is taken as the
reference for time-phase. For example, if the phasor field E(7) has a phase of 90°, the time dependence
would be sinwt. Using the ¢/*! time dependence in Maxwell’s equations allow us to eliminate the
time variable completely, giving the phasor-form, or time-harmonic form of Maxwell’s equations:
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Although the same notation is used, the field variables in this form are now all phasor quantities.

Physical Constants:

Vacuum permittivity €0 = 8.854 x 10712 F/m
Vacuum permeability po = 47 x 1077 H/m
Electron charge magnitude g=1.6022x 10719 C
Electron rest mass mo = 9.1095 x 103! kg
Speed of light in vacuum c=2.997925 x 108 m/s

Commonly Used Greek Letters

alpha @ iota L rho p
beta J6] kappa K sigma o X
gamma -~y T lambda A A tau T
delta VAN mu I upsilon v T
epsilon € nu v phi ¢ @
zeta ¢ xi & = chi X
eta n omicron o psi (U
theta 6 © pi m 1 omega w



